четверг, 19 мая 2011 г.

Лазерная пушка


Ученые Квентин Солтер (Quentin Saulter) и Карлос Эрнандес (Carlos Hernandez) из лаборатории Джефферсона продемонстрировали журналистам рекордную мощность инжектора нового боевого лазера на свободных электронах (FEL) ВМС США. Инжектор, сердце FEL, предназначен для накачки лазерного луча, он проработал на напряжении 500 киловольт 6 часов. По словам Квентина Солтера он был ошеломлен неожиданным успехом. Ученый подчеркивает важность достижения, которое может существенно ускорить создание прототипа корабельной лазерной пушки. К этой цели американские военные шли шесть лет и сегодня они очень близки к успеху.
Вряд ли боевые лазеры на свободных электронах появятся на кораблях раньше 2020 года. В настоящее время опытный образец в лаборатории Джефферсона выдает луч мощностью 14 кВт. Для того чтобы он стал пригоден для боевого применения, нужна мощность минимум 100 кВт. Достижение напряжения в 500 кВ 18 февраля означает, что время разработки сократится, а летальность боевого лазера существенно повысится.
Возбуждая определенные виды атомов, можно получить фотонное излучение. Если отразить его на возбужденные атомы, появится еще больше фотонов. Но в отличие от лампочки, которая светит во всех направлениях, вторая партия фотонов направлена в одну сторону и имеет определенную длину волны, какую именно – зависит от типа возбужденных атомов (т.н. усиливающей среды). Однако лазеры на свободных электронах имеют уникальную особенность: они не используют усиливающую среду, только поток электронов, которые проходят через ряд сверхпроводящих или обычных магнитов. Этот ускоритель генерирует луч, работающий на нескольких длинах волн. С практической точки зрения это означает, что луч FEL не теряет свою энергию, проходя через насыщенный водяным паром морской воздух или задымленное поле боя. Кроме того, для повышения мощности лазерной пушки достаточно просто увеличить количество электронов, исходящих из инжектора.
Длительное время сотрудники лаборатории Джефферсона работали на 73-м установке с 300-кВ инжектором и подводимой мощностью в 200 кВт. Благодаря успеху Солтера и Эрнандеса, ВМС США, видимо, получат более мощный прототип пушки, чем ожидалось ранее. Это позволит провести большее количество испытаний, включая изучение возможностей лазера в противоракетной обороне и борьбе с морскими судами.
В настоящее время опытный боевой лазер FEL американских военных производит самый мощный луч в мире, который способен резать до 6 м стали в секунду. Если удастся достичь заветной цели проекта (мощности луча в 1 МВт), лазерная пушка сможет резать более 600 м стали в секунду. Для этого просто нужно больше электронов, и последняя удача показывает, что это вполне реально. Проблема габаритов тоже решается. Уже подписан контракт с компанией Boeing на создание прототипа лазерной пушки к 2012 году, а к 2015 планируется построить компактную пушку размером 15×6×3 м. Эти габариты приемлемы даже для небольших кораблей класса фрегат.
Пока остается открытым вопрос о питании лазерного мегаваттного оружия, поскольку существующие энергосистемы большинства кораблей с неядерной силовой установкой неспособны отдавать необходимую мощность. Но пути решения этой проблемы есть, а преимущества лазерной пушки на свободных электронах перевешивают все риски в разработке. Боевой мегаваттный FEL позволит эффективно бороться с гиперзвуковыми противокорабельными ракетами, летательными аппаратами и малыми судами противника, поражать наземные цели. И все это на расстоянии 300 км, недостижимом для современной артиллерии.

Антиматерию загнали в бутылку


Антивещество, зеркальное отражение материи Вселенной, привлекает ученых своими свойствами. Оно видится ключом к тайнам мироздания, невероятно мощным источником энергии, идеальным оружием. Обычно физики получают антивещество с помощью радиоизотопов и столкновения частиц в коллайдерах. Однако оно очень быстро уничтожается из-за контакта с обычной материей и исчезает во вспышке гамма-излучения. Хранение античастиц в течение длительного времени всегда было сложной научной проблемой.
Клиффорд Сурко (Clifford Surko), профессор физики из Университета Калифорнии (Сан-Диего), планирует построить контейнер для хранения антивещества. В последнее время физики разработали ряд методов, позволяющих создавать особые состояния антиматерии, в которых большие облака античастиц могут храниться и использоваться для различных целей.
По словам Клиффорда Сурко, за последние несколько лет появились новые методы хранения миллиардов позитронов в течение нескольких часов или более. Охлажденные до низких температур, замедленные частицы теперь могут изучаться в относительно удобной для ученых форме. В настоящее время существует возможность хранить замедленные позитроны, полученные из радиоактивных источников, в течение нескольких дней в специальных "бутылках" со стенками из электрических и магнитных полей. При этом их можно охладить до температуры жидкого гелия, сжимать до высокой плотности и получать по мере необходимости тонкую струйку античастиц из "горлышка" бутылки. Похожий принцип пучка позитронов используют PET-томографы, которые применяются для изучения человеческих метаболических процессов и разработки новых лекарственных препаратов.
"Бутылки" с антиматерией планируется использовать в других целях. Прежде всего, ученые хотят понять процесс взаимодействия античастиц с обычным веществом. Также существуют и другие области применения, например изучение свойств поверхности различных материалов.
В настоящее время Клиффорд Сурко и его коллеги из Университета Калифорнии занимаются исследованиями процесса связи позитрона с обычными атомами и молекулами. Этот процесс занимает всего лишь миллиардную долю секунды. В лаборатории университета уже строят крупнейшую в мире ловушку низкоэнергетических позитронов, способную хранить одновременно более триллиона частиц антивещества. Хранилище представляет собой массив из магнитных бутылок с десятком миллиардов античастиц в каждой. Оно позволит проводить множество новых исследований, например ставить опыты с антиводородом, изучать электрон-позитронную плазму, подобную той, что, по мнению ученых, присутствует на магнитных полюсах нейтронных звезд. С помощью нового хранилища можно будет создавать более мощные потоки позитронов, которые, в частности, нужны для работы над аннигилирующим гамма-лазером.